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Abstract: The current mini-review explains how fragmental methods (FMs) can be used in the analysis and
prediction of physicochemical properties and biological activities. The considered properties include log P,
solubility, pKa, intestinal permeability, P-gp substrate specificity and toxicity. The focus will be a description
of a “mechanistic” approach, which implies a gradual reduction of alternative explanations for any property or
activity. This means a flexible construction of fragmental parameters using large amounts of experimental
data. Since biological activities involve multiple (unknown) target macromolecules with multiple binding
modes, a stepwise classification (C-SAR) analysis is most useful. It involves the following procedures: (i)
construction of physicochemical profiles using parameters that can be reliably predicted, (ii) identification of
reactive functional groups and the largest active skeletons, (iii) generalization of these groups and skeletons
in terms of “site-specific physicochemical profiling”. This entails a dynamic construction of 2D
pharmacophores that can be converted into 3D models.

Keywords: Fragmental methods, biological activity prediction, mechanistic approach, classification analysis.

1. INTRODUCTION

The analysis of biological activities (BAs) aims at the
design of new compounds using a wide variety of methods
[1-28]. Selecting the particular method depends on the
complexity of the biological system, the amount and
reliability of experimental measurements, and on the
diversity of compounds. Several decades ago, the design of
new compounds was based mostly on a chemist’s intuition
that was reinforced by QSAR analyses of small congeneric
sets [1-5]. In the 1990s, structure-based design using 3D
QSAR methods became popular [7-9]. These methods help
our intuition by providing a means to visualize ligand-
receptor interactions, but they cannot be used in the analysis
of diverse compounds due to problems of molecular
alignment [7,8]. Today attention is being shifted to the
analysis of large sets of diverse compounds using various
machine learning [10,11], similarity searching [12-14],
“global QSAR” [15-19] and classification (C-SAR) [20-24]
methods. Most of these methods have appeared as a response
by computational chemists to the explosion of chemical and
biological information generated by rapid advances in
combinatorial chemistry and HTS. The original idea behind
congeneric QSARs was to test scientific hypotheses [2-5,25-
27]. The new generation of similarity and “global” QSARs
aims at answering a pragmatic question – which compounds
should be synthesized? This indicates a potentially big
problem, as the synthesis of new compounds using
sophisticated similarity and diversity analyses does not
necessarily lead to rational drug discovery [9]. Given the fact
that large amounts of experimental data for diverse
compounds have already been (and continue to be) generated,
how can we use this data more effectively in the design of
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new compounds? The question comes down to the effective
extraction of new mechanistic information from the existing
data sets. Recently we attempted to provide a solution for
this task by developing a new software system, Algorithm
Builder (AB) [28,29], using a variety of fragmental methods
(FMs). The present mini-review is largely based on the
thoughts and experiences gathered during the continuous
development of AB and related predictive algorithms [30-
34].

2. MECHANISTIC ANALYSIS

Extracting new mechanistic information from any data
set depends on our ability to use the existing information
about the related chemical and biological mechanisms [2,4].
Several reviews [3-5,25-27] provided excellent examples of
how this can be done in the analysis of congeneric data sets.
In the case of diverse compounds, the extraction of new
mechanistic information is a much more difficult task due to
the almost infinite complexity and fuzziness of biological
constituents [25-27,35]. This leads to the extreme sensitivity
of the obtained results in relation to the clarity of descriptors
[28] and logical sequence of explanations [32].

2.1. Descriptors

All descriptors can be subdivided into three groups,
depending on the clarity of chemical and biological
explanations, as shown in Table 1.

The first group involves physicochemical parameters,
such as pK a, solubility, log P , H-bonding (solvation
parameters), and some other descriptors. These are most
useful in the analysis of “non-specific” biological effects that
are not caused by reactive functional groups or active
skeletons. The second group involves “mechanistic
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Table 1. Rough Estimation of the Usefulness of Various Descriptors in the Mechanistic Analysis of Complex BAs.

Type Descriptors Interpretations

I. Physchem MV, MW, MR, TPSA, Abraham’s H-bonding (α and β) Simple

Log P, solubility, ionization (pKa) Simplea)

II. “Mechanistic fragmental” Functional groups and pairs of groups (interactions) Moderate

Large chains and HOSE codes Moderate

Rigid rings (scaffolds) Moderate

III. “Statistical fragmental” Small chains, HOSE codes or multilevel neighborhoods of atoms Difficult

Atoms or e-state indices Difficult

Fingerprints, hashkeys Difficult

Atom pairs, triplets & quadruplets Difficult

IV. Other
(see article by Gasteiger in this issue)

Topological, shape, geometrical, Quantum chemical Difficult

a) Accurate calculation of these descriptors is problematic (see article by Caron co-workers in this issue); one has to be very careful when using them in the analysis of BAs.

fragmental” parameters, such as conventional functional
groups, interactions (pairs of groups), large atom chains and
rigid rings (scaffolds). These are useful in describing
“specific” chemical and biological effects, including the
following: (i) intra-molecular interactions, (ii) ionization and
chemical reactivity of small functional groups, (iii)
“pharmacophoric” effects of large skeletons. All of these
parameters are obtained by certain rules that split compounds
into constituent parts. Each constituent part represents an
integer variable, denoting the number of occurrences of a
given fragment (or ensemble of fragments) in a compound.
Any given parameter is only useful in mechanistic
explanations if it preserves the integrity of a given functional
group or active skeleton. Not all FMs can satisfy this
condition. “Statistical fragments” split reactive groups and
active skeletons into smaller parts, and thus resemble many
“other” computational descriptors with ambiguous
explanations. All of these descriptors will receive only
minor consideration in this mini-review.

2.2. Multi-Step Analysis

Frequently “mechanistic analysis” is understood as the
derivation of any QSAR with simple-to-understand
descriptors. Such a definition is far from complete when
considering diverse compounds that may cause a great
variety of chemical and biological effects [25-27]. Simple
descriptors may not always provide simple explanations, as
the number of possible effects may exceed the number of
observations. Multiple possible explanations must be
analyzed in a deductive way using the concept of “limiting
factor” as proposed by Albert [1,35]. Once the complexity of
explanations is reduced to a certain level, we can apply the
existing mechanistic information to generate new
knowledge. As Hansch and co-workers [27] pointed out,
“one can get surprising information out of a very simple
system if one can make use of known chemical and
biological information”. This statement expresses the
essence of any stepwise analysis – utilize the existing

knowledge by all the possible means, only then seek
statistical significance and predictive power. Fig. (1) shows
this as a three-step scheme (A-C), where statistical
significance originates from mechanistic generalizations.

Fig. (1). A – stepwise reduction of multiple explanations, B –
classification of effects and construction of new parameters, C –
reduction of parameters based on mechanistic generalizations, D
– single-step statistical optimization without mechanistic
analysis.

The analysis of BAs involves a dynamic construction of
new parameters using the following principles: (A) find the
simplest possible explanations, (B) convert explanations
into parameters, (C) generalize parameters to achieve
predictive power. Hansch and Leo [36-38] used this approach
in deriving their CLOGP model. Lipnick [35] attempted to
use a similar approach in predicting rodent acute toxicity
(LD50, although not using FMs explicitly). We [32-34] used
this approach in the analysis of LD50, human intestinal
absorption (HIA) and P-gp substrate specificity.

2.3. Single-Step Analysis

Frequently the mechanistic approach cannot be used due
to the lack of sufficient information about the underlying
chemical and biological mechanisms. In such cases, a
“purely statistical” approach is used. The latter originates
from the belief that good statistical validation of any model
provides enough information for accepting or disproving any
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Fig. (2). Structure fragmentations: A – IC-based groups and interactions (IC-atoms not highlighted, arrows denote interactions); B –
atom chains (only some of the most meaningful 4-atom chains are shown); C – two-layer HOSE codes (arrows denote polar atom
centers); D – rigid skeletons.

hypotheses. It can also be associated with the assumption
that similar compounds possess similar activities [7,9]. Fig.
(1) shows this as a single-step approach (D) that achieves
good statistical significance without a detailed analysis of
the underlying effects. Any “statistical” parameters from
Table 1 can be used in this approach, provided they are
reinforced by certain statistical methods. From the
computational chemist’s point of view, most FMs produce
too many variables with low statistical significance. Various
statistical methods (PCA, PLS and others, see article by
Migliavacca in this issue) can resolve this problem by
combining the original descriptors into some derivative
functions [10,18,19,39]. This results in a loss of explanatory
power, as derivative functions do not preserve mechanistic
reasoning. The obtained predictive power can be useful in
many practical situations, but it cannot be used in a
mechanistic analysis of BAs. This was quite clearly stated
by Lipnick [35] and Testa [26], who criticized the use of any
statistical parameters in QSAR analysis. Such a criticism
can be generally applied to all statistical models that use
descriptors with ambiguous interpretations and/or employ
the concept of structural similarity.

3. QSPR ANALYSIS

QSPR analysis aims at predicting various
physicochemical properties that offer simple interpretations
in the analysis of BAs. All of such properties can be
subdivided into two groups, as shown in Table 1. We will
only consider analysis and prediction of log P, pKa and
solubility, as most of the remaining parameters can be
calculated using simple atomic increments [28,40]. While
log P can be quite satisfactorily predicted by a variety of
FMs [40-42], this is not exactly so in the case of pKa and
solubility [40]. An analysis of these properties is useful in
demonstrating the existing limitations of any QSPR
predictions.

3.1. Log P Prediction

Several books [36,37,43,44] and review papers
[28,38,40,41] have already described the use of FMs in log
P predictions. Most of these methods imply a summation of
fragmental increments and correction factors that account for
intra-molecular interactions between functional groups. As
Hansch and Leo [37] pointed out, an understanding of these
interactions can provide additional insight in the design of
new drugs. The problem is that there are so many types of
internal interactions that they are difficult to generalize. One
can mention inductive, resonance, steric, H-bonding, and
alpha-effects. Each effect depends on particular functional
groups and the molecular skeletons between the groups. The
simplest explanations can be achieved using “IC-based”
fragmentation [28] as illustrated in Fig. (2-A).

By this method, a compound is split into parts using the
following steps: (i) defining “isolating carbons” (ICi) as any
carbons that are not doubly or triply bonded to heteroatoms,
(ii) defining functional groups (F j) as any inter-bonded
atoms without ICs, (iii) defining interactions (Intijk) as any
pairs of functional groups separated by certain skeletons. As
a result, the following equation is obtained:

Log X = Σ ai x ICi + Σ bj x Fj + Σ cijk x Intijk (eq 1)

Here log X is log P. The obtained fragments correspond
to conventional functional groups that can be analyzed in
terms of electron withdrawing capability, ionization and
chemical reactivity. For example, H2N-CH2-COOH is
automatically split into H2N, CH2 and COOH, whereas
H2N-CO-CH3 is split into H2NCO and CH3. The obtained
interactions (Intijk) can be related to various types of internal
effects. For example, a fragmentation of salicylic acid
produces an aromatic chain HO-C-C-COOH that can be
associated with strong ortho-interaction (as a combination of
internal H-bonding and electronic resonance). A
fragmentation of lactic acid produces an aliphatic chain HO-
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C-COOH that can be associated with strong inductive
effects. Such physicochemical clarity can only be obtained at
the cost of reduced statistical significance. If all
physicochemical effects are represented by individual
parameters, their number becomes comparable to the number
of experimental data points. This leads to many single-point
determinations and complex linear dependencies. In order to
overcome this problem, Hansch and Leo [36-38] used the
“constructionist” approach. This implies a stepwise analysis
of compounds with different functionality in a deductive
way. The log P values of simple hydrocarbons provide
increments for IC atoms (these differ in their branching,
cyclization and aromaticity). When IC increments are
subtracted from the log P of mono-functional compounds,
increments for individual functional groups are obtained.
When these are subtracted from log P  of bi-functional
compounds, increments of interactions are obtained. The
analysis continues within specific classes of poly-functionals
in order to understand their internal interactions. At each
step various types of topological and physicochemical
generalization can be made, so the total number of
parameters can be quite small. In Fig. (1), this approach
corresponds to steps A-C, leading to the “mechanistic
induction” that is the major source of predictive power in
CLOGP. Many subsequent investigators attempted to
maximize the statistical significance of structural descriptors
using steps B and C. This led to the derivation of new FMs
with varying predictive power [40-42]. The KOWWIN
method of Meylan and Howard [45] deserves a special
mention, as it produced good statistical results on several
test sets [40-42]. A common limitation of any FMs that
were designed for predicting log P  is that they do not
preserve the mechanistic reasoning of parameters when used
for predicting other properties. Different properties require
constructing different FMs in keeping with steps A-C. If
this is not done, we cannot generate mechanistic induction
comparable to that achieved in CLOGP. Recently we [28]
proposed a possible solution for this problem using equation
(1). All parameters were clustered using an empirical
similarity key and hierarchical clustering analysis (HCA).
Such a procedure can preserve the physicochemical meaning
of parameters while reducing their number to almost any
desired level. The problem is that any given similarity key
has quite a narrow practical application. The similarity key
that was constructed for log P may not be applicable to other
physicochemical properties.

3.2. Limitations of log P Calculations

The predictive power of any method is limited to the
knowledge that can be extracted from the training set (see
article by Caron co-workers in this issue). The currently
available mechanistic knowledge is unsatisfactory in the
following areas: (i) strong alpha-interactions in poly-hetero-
cycles and (ii) conformational effects in natural compounds.
As Leo correctly pointed out [38], “many chemists are
understandably skeptical of fragmenting an aromatic hetero-
cycle and trying to make sense of the parts”. A similar
statement can also apply to the fragmenting of large
peptides, sugars and alkaloids. Even more serious problems
arise when predicting log P of electrolytes that involve the
partitioning of charged species. The latter effect is difficult

to model due to the complexity of ion partitioning [46] and
the lack of sufficient experimental data. For all of these
reasons, any log P calculations for compounds that are very
different from the training set may be inaccurate. A highly
incorrect assumption is that a lack of mechanistic knowledge
can be compensated for by statistical approaches, such as
ANNs with e-state indices [39] or PLS with atom chains
[19]. These approaches are quite efficient when seeking to
obtain predictive power in a hurried manner. But they do not
generate any mechanistic induction, so the limits of their
practical application can hardly be ascertained. The actual
difference between statistical and mechanistic inductions is
difficult to estimate. Recently Mannhold and Petrauskas
[42] attempted to do this in a comparative validity test of
the following programs: (i) CLOGP and KOWWIN -
developed using steps A-C in a manual way, (ii) AB/LogP –
using steps B-C in an automated way, and (iii) SciLogP
Ultra – using step D (ANNs with e-state indices). The
obtained results indicate that the accuracy of predictions
decreases proportionally to the decrease in the amount of
mechanistic interpretations. To generalize this statement, the
following order of importance for predictive power can be set
forth: training set > mechanistic induction > statistical
induction.

3.3. pKa Prediction

pKa is perhaps the most important physical property in
the analysis of BAs, but it is also the hardest to predict.
Frequently a compound’s ionization affects BA in a much
stronger way than log P or any other properties [47]. This
raises stringent requirements for the accuracy [48] and speed
of pKa calculations that cannot be met by any computational
methods. Da Silva and co-workers [49] attempted predicting
p K a  using ab initio calculations. Citra [50] used
semiemprical quantum mechanics. Klopman and Fercu [51]
attempted using simple functional groups. Xing and Glen
[52] used small HOSE codes (similar to those used in NMR
predictions [53]) with PLS. All of these studies dealt mostly
with small mono-electrolytes, and in many cases produced
not very accurate calculations even for compounds from the
training sets. Meanwhile, the analysis of BAs frequently
involves large poly-basic (drug-like and natural) compounds
with an increased complexity of electrolyte behavior. How
can we predict accurate pKa values for such compounds? The
most reliable predictions are achieved using Hammet or Taft
equations based on substituent effects. However, these
equations are only valid for narrow congeneric sets, whereas
substituent sigma constants depend on ionization center.
Perrin and co-workers [54] described many additional
pitfalls: (i) tautomerism and vynilogy, (ii) charge transfer in
conjugated (hetero-aromatic) systems, (iii) the effect of
multiple ionized groups on a given electrolyte center. None
of these effects can be accurately predicted in a high-
throughput mode, unless the “generic substructure” approach
is used. The latter implies an empirical definition of
multiple structural skeletons using various types of generic
atoms, bonds and functional groups. Each skeleton must be
provided with a generalized Hammett-type equation(s) that
accounts for the variable substituent effects. The definition
of generic substructures can be compared to the lengthy
constructionist approach using steps A and B in Fig. (1).



Analysis of Biological Activities of Diverse Compound Sets Mini Reviews in Medicinal Chemistry, 2003, Vol. 3, No. 8    801

Fig. (3). Physicochemical Profiling (PP) for solubility of crystalline compounds.

Unlike in log P, the key structural parameters that affect pKa
cannot be obtained by any automated means. Potentially,
this could be achieved by using large HOSE codes (similar
to those used by Xing and Glen [52]), but such a suggestion
still requires a careful verification. In the meantime, manual
analysis remains the only way of achieving any reliable
predictions, so it is easy to understand why there are so few
commercial programs for predicting pKa values [30,55-57].
All of these programs can be viewed as different
combinations of the generic substructure and Hammett
approaches. The validity of these programs depends on the
amount of mechanistic interpretation that was applied in
their development, whereas the underlying theories are not as
important.

3.4. Aqueous Solubility Prediction

The prediction of solubility (log Sw) requires considering
a compound’s “crystallinity” – a phenomenon that is not
well understood. So it cannot be predicted using any
meaningful basis, except that we can try various hypotheses.
Bearing this in mind, various versions of the following
general equation are used [40,45,58-62]:

Log SW = Const + (Σ ai x fi) + b x mp + c x log P + other
properties (eq 2)

Here Sw means characteristic solubility of neutral
compounds. The first term denotes a sum of fragmental
increments or correction factors [40,45,58,59]. All of these
increments are frequently omitted [60-62], as the remaining
physicochemical parameters can provide good enough
correlations. This observation is only valid when dealing
with simple, not-very-diverse compounds. The second term,
mp, is melting point that is supposed to reflect the strength
of crystal packing [60-62]. It is also frequently omitted, as it
cannot be accurately calculated [40]. Abraham and Lee [62]
proposed to replace mp with a product of H-acidity and
basicity (α  multiplied by β) in an amended solvation
equation. This model provides very intelligent explanations,
but it includes a polarity-polarizability (π) parameter that is
difficult to calculate [63]. In addition, this model was
derived using quite a limited data set (N = 659), covering
mostly compounds with only one or two functional groups.
The third parameter that deserves special consideration is log
P . Its use can be justified by an empirical correlation

between log Sw and log P that was obtained by Hansch and
co-workers for 156 liquids [64]. Testing this correlation on a
larger data set (N = 3,738) using mostly solids revealed that
it only holds for compounds with log P > 0.5 (N = 3,000,
R2 = 0.7, SD = 1.1). Hydrophilic compounds with log P <
0.5 disobey this correlation (N = 738, R = 0), indicating
that equation (2) becomes invalid. Sometimes log P  is
replaced with log D  (the “distribution” coefficient for
electrolytes at a given pH), enabling the one to estimate the
pH dependence for log Sw [58]. This approach deserves
serious criticism, as equation (2) is generally not valid for
electrolytes. Variable pH and different counter-ions may
influence crystal packing – a factor that may nullify any
quantitative predictions. So the solubility of electrolytes can
hardly be predicted by any QSPR methods, as the
underlying LFER principle is easily compromised. One can
only seek qualitative predictions by means of classification
methods. Fig. (3) shows an example of such an approach
[31].

Plot (A) displays a subdivision of all the possible
electrolytes into several classes. Plot (B) shows a further
subdivision of each electrolyte class into smaller sub-classes
using log P and MW cut-off values. Each cut-off value is
defined using C-SAR methods. Such “physicochemical
profiling” (PP) is the only way to go when the mechanistic
factors are not well understood. In this case FMs are not as
useful, as we do not know how exactly the obtained
parameters should be interpreted.

4. QSAR ANALYSIS

The major (but not the only) goal of accurate
physicochemical predictions is to facilitate the analysis and
interpretation of BAs. This can be done in two different
ways - using QSAR and C-SAR methods. For the sake of
simplicity, we will define QSAR as any single equation that
relates BAs to some descriptors from Table 1. Such a
simplified definition is very convenient, since it
distinguishes QSAR from C-SAR that describes BA by a
set of multiple equations. Generally, the “single-equation”
models are much more popular than the “multiple-equation”
models, although in the case of diverse compounds they
have numerous limitations.
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Fig. (4). Application areas of QSAR, 3D and C-SAR methods. Continuous lines denote the mechanistic approach, dotted lines – the
statistical approach, vertical dotted lines – new experimental work. Arrows denote trends in multi-step analyses.

4.1. Assumptions and Limitations

The major limitation of any QSAR is that it assumes the
existence of LFER. Species with different charges, MW,
TPSA and other properties may alter biological mechanisms
[25,26]. So any single equation that attempts to describe a
large set of diverse compounds has no mechanistic rationale.
This limitation can only be overcome when dealing with
small sets of not-very-diverse, non-reactive, non-electrolyte
compounds. In addition, these compounds must not involve
unknown pharmacophores that may induce various
biological targets. This forces us to consider any biological
system as “non-specific”. The latter assumption is an
obvious oversimplification, so a variety of 3D methods have
been designed [6-8]. Most of these methods assume that BA
is “highly specific”, originating from a single static receptor
with an invariable binding mode. Such an assumption is
another oversimplification [7,8,26], as any in vivo (and
many in vitro) systems include multiple targets with fuzzy
specificity. Experimental data from such biological systems
cannot be described by any single equation or 3D model.
Instead, multiple equations and 3D models must be
considered, leading us to the “mechanistic C-SAR”
approach. Fig. (4) shows how mechanistic information
depends on the initial assumptions made by each method.
Continuous arrows indicate trends of the mechanistic
approach that is also referred to as “baseline analysis”.
Dotted arrows indicate trends of the statistical or similarity
approaches that put statistical considerations in front of
mechanistic analysis.

The difference is in how we use the available mechanistic
information in the analysis of experimental data. The
baseline approach attempts to utilize this information to the
maximum extent, whereas the similarity approach mainly
disregards it.

4.2. Baseline Analysis

The baseline approach originates from the idea that
outliers from QSAR predictions indicate new biological
mechanisms. This idea is only valid if the underlying
QSAR model reflects a certain biological mechanism by
itself, making the analysis of outliers simpler than the
analysis of parent BAs. As Kubinyi [5] pointed out,

“Predictions from QSAR studies should mainly serve to
derive new hypotheses”. Derivation of new hypotheses
implies using mechanistic deductions that cannot be replaced
with statistical inductions [26,32,35]. Lipnick [35] provided
an excellent example of the baseline approach in predicting
LD50 values. The analysis started with the simplest possible
compounds – mono-functional alcohols and ketones – that
were described in terms of a bi-linear log P model. This
model reflects an idea of non-specific narcosis that is
believed to be the primary cause of acute toxicity of any
non-reactive non-electrolytes [65]. The obtained QSAR was
used to analyze complex poly-functionals that produced
positive deviations from baseline predictions. These were
grouped into several classes according to the following
factors: (i) “biological similarity” of compounds based on
the chemical reactivity of functional groups, and (ii) “excess
toxicity” expressed as the difference between the actual and
predicted toxicities. Such a classification can be compared to
mechanistic C-SAR analysis [32], the major difference being
in how we define the “biological similarity” of outliers. In
the baseline approach it is defined quite loosely, using the
investigator’s intuition. In the C-SAR approach it is defined
very strictly, using various descriptor cutoff values. The
baseline approach can also be compared to the Hansch and
Leo constructionist approach in developing CLOGP. Both
of these approaches imply a very careful analysis of
experimental data using steps A and B in Fig. (1). The
difference is that any BA is a much more complex property
than log P. Accordingly, constructing any credible algorithm
would require much greater efforts than developing CLOGP.
For this reason, there are no examples of mechanistic
baseline analysis using FMs. Any FMs produce large
numbers of parameters that are difficult to relate to various
chemical and biological effects. If any parameters do not
receive unambiguous interpretations, the mechanistic
analysis of outliers becomes impossible. If all parameters
receive clear interpretations, we obtain a “knowledge base”
that considers BA far beyond the frameworks of a single
QSAR equation.

4.3. Similarity Analysis

Similarity analysis can be defined as any method that
does not provide unambiguous interpretations for all QSAR
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(or C-SAR) parameters. This is always the case if in Fig. (1)
statistical optimization (step C) is not preceded by a careful
constructionist approach using steps A and B. So we come
down to a single-step statistical analysis (D) that disregards
the consideration of the particular biological mechanisms.
The only reasoning behind such an analysis is that similar
compounds possess similar BAs. The latter assumption is
not always correct, as even small changes in chemical
structure may lead to dramatic changes in BA [7,9].
Frequently the similarity approach is applied for predicting
various BAs using “statistical” fragmental parameters. For
example, Andrews and co-workers [15] used molecular
fingerprints in predicting oral bioavailability. Ghuloum and
co-workers [17] used molecular hashkeys (representing
certain combinations of fragmental and non-fragmental
descriptors) in predicting a variety of pharmaceutical
properties. Anzali and co-workers [18] used “multilevel
neighborhoods of atoms” (analogs of small HOSE codes) in
predicting over 500 types of BAs. The striking feature of all
of these studies is that the obtained models cannot be used
for baseline predictions. Any similarity prediction is nothing
more than a statistical hypothesis that co-exists with many
other hypotheses. New hypotheses (that explain deviations
from predictions) cannot be based on the old hypotheses, so
the similarity predictions cannot be used for baseline
predictions. The dotted line on Fig. (4) shows what happens
if one attempts to do so. Each step of statistical induction
without mechanistic deduction decreases our ability to
understand the reality. This can be associated with the risk
of error propagation [26], leading to proliferation of
unproductive hypotheses. The derivation of any statistical
model must be followed by new experimental work
(synthesis and screening), which is also unproductive, as it
does not aim at testing any rational hypotheses. The result is
the generation of large amounts of experimental data that
cause “increasing the size of the haystack” when “trying to
find a needle” [9].

5. C-SAR ANALYSIS

Classification analysis differs from QSAR in that it is
not restricted by the limitations of LFER. Instead of
deriving a single QSAR equation, multiple equations (or
rather inequalities) are derived. These group compounds into
classes that may correspond to different biological
mechanisms. The question of whether any given
classification is biologically meaningful is of utmost
importance. Among a great variety of methods that group
compounds into classes [10,11,20-25], we will only
consider recursive partitioning (RP) [23]. This is a central C-
SAR method in AB that proved very useful in the
mechanistic analysis of complex BAs [32-34].

5.1. Recursive Partitioning (RP)

RP is a multi-step statistical procedure that can be
viewed as an automated “multiple baseline” method. At each
step of RP, all descriptors are sequentially analyzed in order
to find the best criterion for splitting compounds into two
classes (“active” and “inactive”). The best criterion is given
by a structural or physicochemical descriptor with a certain

cut-off value that produces the highest statistical
significance. For example, one could obtain “log P < 0.5” or
“No of COOH groups > 1”. This procedure is repeated until
no statistically significant splitting of new classes of
compounds is possible. The result is a partitioning tree that
needs to be mechanistically interpreted. One can easily
obtain a large variety of “statistical” RP trees that group
compounds into classes using many alternative criteria.
Which criterion is correct when statistical significance is
indifferent? The answer can only be obtained using a multi-
step C-SAR analysis with sequential identification of the
following effects: (i) physicochemical profiles of active and
inactive compounds, (ii) “small structural” effects, such as
chemical reactivity, (iii) “large structural effects” - the largest
possible skeletons that are common to active compounds,
(iv) construction of “pharmacophores” – structural constructs
with site-specific generalizations. This order is strictly
defined by the constructionist approach. The first three steps
gradually reduce multiple alternative explanations, whereas
the last step aims at increasing the generality of
considerations.

5.1.1. First Step: Physicochemical Profiling (PP)

PP implies RP (or discriminant) analysis with various
physicochemical properties. The result is a set of
physicochemical cut-off values that can be compared to
multiple Hansch equations. Similarly to the Hansch
analysis, any PP is only useful if it satisfies the following
conditions: (i) it employs reliable parameters, (ii) follows
common knowledge about the underlying mechanisms, (iii)
does not produce unexplained deviations. Any
physicochemical explanations are much more general than
sub-structural explanations, so PP must precede any sub-
structural analysis. Fig. (5-A) shows an example of PP for
human intestinal permeability [33].

Here TPSA and MW describe the entire structural space,
facilitating a substructure-specific analysis of HIA. All
compounds were subdivided into three types of permeability
– paracellular, “non-restricted” and “restricted”. The
usefulness of this description can be seen from the following
example. Klopman and co-workers [66] identified polar
sugar skeletons in amikacin and neomycin as fragments that
prohibit HIA  (“biophobes”). The parent compounds –
amikacin and neomycin - have very high TPSA, falling into
the “non-permeable” region in Fig. (5 - A ). So the
“biophobic” effect of respective sugar skeletons can be
excluded from considerations at the earliest stages of HIA
analysis. Fig. (5-B) shows an example of PP for P-gp
substrate specificity [34]. Here MW and electrostatic charge
(coming from the ionization of strong acids and bases)
determine the regions for active and inactive compounds.
The question marks designate the regions that require further
substructure-specific analysis. Essentially, these are the only
regions where 3D modeling may lead to any rational
hypotheses. (Derivation of such hypotheses can be compared
to structure-based design that is preceded by property-based
design [25].) Both examples in Fig. (5) represent simplified
versions of PP for the sake of simple visualization. In a
general case scenario, any PP should be “multidimensional”,
representing permissible and non-permissible ranges for
many different properties. Even if some properties may seem
to be non-essential, a definition of their variability ranges
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Fig. (5). Simplified PP for human intestinal permeability (A) and P-gp substrate specificity (B). In the latter case approximate MW cut-
off values are shown.

may still prove meaningful, as it characterizes the diversity
of the training set. Frequently multiple properties are
combined into principal components using PCA, although
this is not always permissible. For example, consider the
analysis of HIA for highly polar compounds, assuming that
TPSA and MW are inter-correlated. In this case PCA may
combine these properties into one component, resulting in
the loss of mechanistic reasoning.

5.1.2. Second Step: Identification of Small Structural
Effects

These are reactive combinations of small functional
groups that can be most easily identified using the IC-based
and atom chain parameters shown in Fig. (2-A,B). Klopman
used atom chains for identifying reactive skeletons in many
types of BAs [20,21,66]. The most recent study involved
receptors related to Parkinson’s disease (dopamine receptor,
MAO-B, N-methyl-D-Aspartate receptor) [67]. This analysis
was not preceded by PP, as the analyzed activities were
clearly defined by the sub-structural effects. A much more
common situation is when such clarity is completely
lacking. For example, consider the case of HIA [33]. Here
PP was used to define non-specific permeability. Small
structural effects were related to quaternary nitrogens
(permanent charges that prohibit permeation) and
biphosphonates (chelating ability towards Ca2+). Some
effects (e.g., active transport) could only be captured by a
“manual” analysis of outliers. These results have clearly
shown that good statistical significance of structural
parameters does not automatically mean good mechanistic
explanations.

5.1.3. Third Step: Identification of Largest Active
Skeletons

These denote the largest possible skeletons that are
typical of active compounds. Any diverse compounds can be
viewed as a mixture of many smaller subsets representing
“biologically similar” compounds. For example, natural
compounds consist of analogs of peptides, alkaloids, etc.
The same can be said of any therapeutic drugs that consist of
multiple “narrow” chemical classes. Each class can be
characterized by a certain skeleton that is much more
meaningful than any statistically derived pharmacophore. If
statistical results reveal no major difference between the

“biological” and “non-biological” skeletons, the biological
skeleton is always preferable. It is therefore important to
identify such skeletons prior  to the construction of
“statistical” pharmacophores. P-gp substrate specificity is a
good example. Seelig [68] identified several
“pharmacophores” based on two- and three- point models. A
verification of this idea revealed many alternative models
with equally good statistical significance [34]. Many of
these models could be eliminated by simple PP, as shown
in Fig. (5-B). Among the remaining compounds, the highest
biological meaning was obtained using common skeletons
of the known P-gp substrates (analogs of peptides, taxanes,
colchicines, anthracyclines, vinca alkaloids, etc.). Fig. (6-A)
shows an example of the analogs of colchicines.

The identification of such large skeletons can be
performed in two ways. The first is by means of the
automated generation of large atom chains driven by the
statistical significance of the smaller chains. Small “active”
chains (that are typical of active compounds) are gradually
enlarged, whereas chains that are not “active” are discarded.
So we can identify skeletons of up to 15 atoms [29,32]. The
second way is based on “rigid scaffolds” [69] that are shown
in Fig. (2-D). Each ring skeleton can be used as a “large
building block” in a dynamic construction of active
skeletons [29]. Obviously, there are many situations when
neither of these approaches will work. Fig. (6-B) shows an
example of vinblastine and other similar natural compounds.
Here the largest active skeleton proved to be very small
compared to the actual molecules, clearly pointing to the
current limitations of C-SAR analysis. Fig. (6) can also
serve as an example of a much broader problem in C-SAR
related to the critical assessment of the obtained results. The
result (A) is meaningful, as it provides good explanations
leading to high-quality predictions in a narrow structural
space. The obtained skeleton can be further generalized in
order to enhance its predictive power. The result (B) is not
meaningful, as it provides no explanations. So it should be
discarded from any further considerations.

5.1.4. Fourth Step – “Pharmacophore” Construction

This step implies a site-specific generalization of the
active skeletons (small and large) that were identified in the
previous steps. So we expand their predictive power, while
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Fig. (6). Examples of identification of the “maximum active” skeletons using large atom chains and rigid scaffolds. A – analogs of
colchicine, B – vinblastine and similar natural compounds.

preserving mechanistic reasoning. This means a
“physicochemical induction” that can be compared to Hansch
and Leo’s generalization of CLOGP parameters. Obviously,
this induction should only be applied to the skeletons that
are mechanistically meaningful. In the case of small
fragments, generalizations are achieved using simple generic
atoms with variable topological properties (e.g., aromaticity,
branching, etc.). For example, cholinesterase inhibiting
groups can be represented as follows: (i) R3P=X, where R –
not OH, NH, SH, X - =O, =S, (ii) R-OCON<, where R –
aromatic or oxime [32]. Similar substructures constitute the
essence of the “knowledge bases” used in predictive
toxicology [32,70]. In the case of large structural skeletons,
generalizations must be started from the definition of the
major “pharmacophoric domains” – ionization centers,
electron donors, rigid rings and flexible chains. Each of
these centers must be clearly defined, which is not always
easy to do. For example, consider Fig. (6-A) - is the 7-
member aliphatic ring essential for P-gp substrate
specificity? If not, then the colchicine-type skeleton can be
generalized as follows:

[aromatic ring] – [aliphatic chain of 2-3 atoms] – [e-donor].

This type of “pharmacophore” is very broad, so each
domain must be further specified using various structural,
topological and physicochemical definitions. For example,
the replacement of an abstract “e-donor” with a small generic
substructure (-XCOR, X is NH or O) can explain the activity
of both structures in Fig. (6). This hypothesis can only be
accepted if it produces high statistical significance – this is
where statistical induction can be useful. This kind of
inductive approach must be used for each “pharmacophoric
domain”. Can an aromatic ring involve any heteroatoms?
Can an aliphatic chain involve bulky substituents? All
hypotheses that are statistically meaningful have to be
expressed in terms of either generic substructures or
physicochemical cut-off values. Fig. (7) shows an example
of the possible result.

Here the “2D pharmacophore” represents a combination
of three structural segments with clearly defined structural
variation limits. Each segment has to be characterized
individually, using structural or physicochemical parameters
that may not be applicable in the other segments. The
situation is quite similar to PP, but it is now done at the
site-specific level. The resulting 2D pharmacophore can be
further converted into a 3D model in order to account for
“delicate” conformational effects. Any 2D explanations are
much more general than 3D explanations, so derivation of
2D pharmacophores must precede the derivation of 3D
pharmacophores. If this is not done, the obtained 3D models
resemble solutions of ill-conditioned systems of equations
that lead to chance correlations. To the best of our
knowledge, so far site-specific PP was not explicitly used in
any 3D studies. De Groot and Ekins [72,73] provided an
example of the implicit use of this approach in predicting
P450 mediated metabolism. Each of the analyzed
compounds received careful site-specific consideration,
costing many years of “non-statistical” analysis of CYP 2D6
specificity. This can be viewed as site-specific PP that was
facilitated by a priori mechanistic knowledge. The
subsequent 3D modeling can be viewed as a fine-tuning of
various conformational effects.

6. CONCLUSIONS

Using chemical and biological information as simple
parameters that facilitate the gradual reduction of multiple
explanations constitutes the essence in the mechanistic
approach. Any type of chemical or biological information
can be expressed as certain “mechanistic” descriptors. The
logical meaning of these descriptors must correspond to the
complexity of the analyzed properties. If we deal with
“simple” log P, an analysis in terms of intra-molecular
interactions is sufficient. But if we deal with complex in
vivo  data, any known ADME/Tox effects should be
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Fig. (7). Comparison of 2D and 3D pharmacophore models for vinblastine. The 2D model is only an illustration of possibilities that
may not correspond to reality. The 3D model was taken from literature [71]. Steps A – D correspond to those in Fig. (1).

represented as “indicator” parameters [32]. By converting our
knowledge into simple parameters we identify compounds
that deviate from the existing knowledge. An analysis of
these deviations is the most valuable source of new
mechanistic information. This information can only be
obtained in a multi-step deductive approach, as the number
of alternative explanations is always greater than (or
comparable to) the number of experimental observations.
Analysis must start from the simplest compounds, with a
gradual increase in structural complexity. Explanations must
start from the simplest considerations, with a gradual
increase in structural specificity:

Physicochemical > 2D structural > 3D (conformational) >
(Biochemical)

When the available information reaches a certain critical
threshold, any 2D (and 3D) structural explanations can be
generalized using physicochemical, chemical or even
biological considerations. This leads to the increased
predictive power of our models, and represents the major
source of good statistical significance in our correlations. So
far this scenario has not been very popular, as good
statistical significance was usually obtained using various
single-step (statistical and similarity) approaches. This
indicates a potentially big problem in cheminformatics, as
the blind optimization of statistical significance is the “dead-
end” of any mechanistic analysis. More than two decades
ago Hansch [2] pointed out that “If QSAR accomplishes
nothing more than to get chemists to take a more thoughtful
and logical attitude in derivatizing a lead compound, it will
have made an important contribution”. In the case of diverse

compounds, any single-step statistical optimization has a
reverse effect, as it discourages us from thinking critically
about the underlying biological mechanisms.
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ABREVIATIONS

AB = Algorithm builder

ANNs = Artificial neural networks

BA = Biological activity

C-SAR = Classification structure-activity relationship

FM = Fragmental method

HIA = Human intestinal absorption

LFER = Linear free energy relationship

Log D = Octanol/water distribution coefficient for
electrolytes at a certain pH value

Log P = Octanol/water partition coefficient for the
neutral species

Log Sw = Logarithm of characteristic solubility

MW = Molar weight
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MV = Molar volume

MR = Molar refraction

mp = Melting point

PCA = Principal component analysis

PLS = Partial least squares

pKa = Acid-base ionization constant

PP = Physicochemical profiling

RP = Recursive Partitioning

QSAR = Quantitative structure-activity relationship

QSPR = Quantitative structure-property relationship

TPSA = Topological polar surface area.
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